A membrane bending model of outer hair cell electromotility.

نویسندگان

  • R M Raphael
  • A S Popel
  • W E Brownell
چکیده

We propose a new mechanism for outer hair cell electromotility based on electrically induced localized changes in the curvature of the plasma membrane (flexoelectricity). Electromechanical coupling in the cell's lateral wall is modeled in terms of linear constitutive equations for a flexoelectric membrane and then extended to nonlinear coupling based on the Langevin function. The Langevin function, which describes the fraction of dipoles aligned with an applied electric field, is shown to be capable of predicting the electromotility voltage displacement function. We calculate the electrical and mechanical contributions to the force balance and show that the model is consistent with experimentally measured values for electromechanical properties. The model rationalizes several experimental observations associated with outer hair cell electromotility and provides for constant surface area of the plasma membrane. The model accounts for the isometric force generated by the cell and explains the observation that the disruption of spectrin by diamide reduces force generation in the cell. We discuss the relation of this mechanism to other proposed models of outer hair cell electromotility. Our analysis suggests that rotation of membrane dipoles and the accompanying mechanical deformation may be the molecular mechanism of electromotility.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulation of motor-driven cochlear outer hair cell electromotility.

We propose a three-dimensional (3D) model to simulate outer hair cell electromotility. In our model, the major components of the composite cell wall are explicitly represented. We simulate the activity of the particles/motor complexes in the plasma membrane by generating active strains inside them and compute the overall response of the cell. We also consider the constrained wall and compute th...

متن کامل

ROCK-dependent and ROCK-independent control of cochlear outer hair cell electromotility.

Outer hair cell electromotility is crucial for the proper function of the cochlear amplifier, the active process that enhances sensitivity and frequency discrimination of the mammalian ear. Previous work (Kalinec, F., Zhang, M., Urrutia, R., and Kalinec, G. (2000) J. Biol. Chem. 275, 28000-28005) has suggested a role for Rho GTPases in the regulation of outer hair cell electromotility, although...

متن کامل

Diflunisal inhibits prestin by chloride-dependent mechanism

The motor protein prestin is a member of the SLC26 family of anion antiporters and is essential to the electromotility of cochlear outer hair cells and for hearing. The only direct inhibitor of electromotility and the associated charge transfer is salicylate, possibly through direct interaction with an anion-binding site on prestin. In a screen to identify other inhibitors of prestin activity, ...

متن کامل

Actuation of Flexoelectric Membranes in Viscoelastic Fluids with Application to Outer Hair Cells

Liquid crystal flexoelectric actuation uses an imposed electric field to create membrane bending and it is used by the Outer Hair Cells (OHC) located in the inner ear, whose role is to amplify sound through generation of mechanical power. Oscillations in the OHC membranes create periodic viscoelastic flows in the contacting fluid media. A key objective of this work on flexoelectric actuation re...

متن کامل

Active cochlear amplification is dependent on supporting cell gap junctions

Mammalian hearing relies upon active cochlear mechanics, which arises from outer hair cell electromotility and hair bundle movement, to amplify acoustic stimulations increasing hearing sensitivity and frequency selectivity. Here we describe the novel finding that gap junctions between cochlear supporting cells also have a critical role in active cochlear amplification in vivo. We find that targ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biophysical journal

دوره 78 6  شماره 

صفحات  -

تاریخ انتشار 2000